
ISSN: 3065-7601

Article

Research on Congestion Prediction for High-Density Crowd Scenes

Yanan liu1, Fang Wu1, Di Zhou2,*, Fanjie Zong1, Yu wang1, Lei Zhou3, Jingyuan Chen4 and Yong Ding5

1School of Information Technology and Artificial Intelligence, Zhejiang University of Finance ＆ Economics,

Hangzhou, 310018, China;
2Zhejiang Uniview Technologies Co.,Ltd, Hangzhou, 310051, China;
3Huaxin College of Hebei Geo University, Shijiazhang, 050700, China;
4Hangzhou Tengrunda Technology Co., Ltd., Hangzhou, 310000, China;
5College of Integrated Circuits, Zhejiang University, Hangzhou, 310058, China;
*Correspondence: Di Zhou(zhoudi@uniview.com);

https://doi.org/10.63138/irp010205

Abstract: With the rapid development of the tourism industry, tourist attractions often face tremendous pressure
from crowds during peak times such as holidays, leading to safety hazards and a decline in visitor experience.
Effective pedestrian flow prediction can anticipate changes in the flow of people in public places, allowing for
preemptive measures to be taken and effectively preventing congestion issues. This study focuses on the prediction
of pedestrian flow in public places, aiming to achieve real-time monitoring and dynamic management of
pedestrian flow through advanced information technology, thereby enhancing the safety of public places.
Traditional pedestrian flow models are not accurate enough and lack specificity. In this study, a multi-feature
integrated pedestrian flow prediction model named the GAT-LSTM model is proposed based on the Graph
Attention Network (GAT) and Long Short-Term Memory (LSTM) .
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1. Introduction
Under the impetus of globalization and economic integration, the tourism industry has experienced rapid

development. With this comes the challenge of surging visitor numbers during peak times such as holidays, which
not only negatively impacts the visitor experience but also poses significant safety risks. For instance, the 2022
Halloween crowd crush in Itaewon, South Korea, resulted in hundreds of casualties due to congestion on a narrow
street. This incident highlighted the dangers of high-density crowds in confined areas and exposed the deficiencies
in visitor flow warning and evacuation management in dense venues. Against this backdrop, accurately predicting
changes in visitor flow in public places is crucial for preventing congestion, ensuring visitor safety, and enhancing
the tourism experience. Effective visitor flow prediction can help managers deploy resources in advance and
devise strategies to be well-prepared before peak visitor flows arrive.
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Traditional visitor flow prediction models often lack comprehensive consideration of complex environmental
factors, leading to low prediction accuracy and inability to meet practical application needs. To address this issue,
this study proposes an innovative multi-feature integrated visitor flow prediction model—the GAT-LSTM model.
Visitor flow in public places often exhibits periodicity in time, such as daily, weekly, and monthly cycles.
Meanwhile, the internal road networks are intricately connected, with different roads having spatial correlations,
and the propagation of congestion states is greatly related to spatial relationships. This study integrates external
features affecting visitor flow changes and combines the advantages of Long Short-Term Memory networks
(LSTM) and Graph Attention Networks (GAT), aiming to achieve accurate prediction of visitor flow in public
places by integrating time series analysis and spatial network structure analysis.

The LSTM model part focuses on capturing the temporal dynamics of visitor flow data, while the GAT model
part effectively identifies and utilizes key nodes and connections in the spatial network. Through this multi-feature
fusion approach, the GAT-LSTM model can more comprehensively understand and predict trends in visitor flow.
This study validates the advantages of the GAT-LSTM model in prediction effectiveness through experimental
comparisons with other models. The results of this research not only provide new technical means for visitor flow
management in public places but also offer new insights for the fields of intelligent transportation systems and
urban safety management.

2. Related Work
In the field of time series analysis, some classic algorithms such as Historical Average (HA), Autoregressive
Integrated Moving Average (ARIMA) [1], and Vector Autoregression (VAR) [2] have been widely applied
to traffic flow forecasting problems. However, these traditional models are generally only suitable for
small-scale stationary time series and are not adequate for dealing with complex, large-scale, and dynamic
time series data. Moreover, since these methods only consider the impact of temporal factors, they tend to
overlook the spatial information in time series data, leading to less accurate forecasting results. Subsequently,
many traditional machine learning methods, such as Support Vector Regression (SVR) [3] and Random
Forest Regression (RFR) [4], have been proposed for traffic flow prediction. These methods can effectively
handle high-dimensional data and capture complex nonlinear relationships. In recent years, researchers have
further modeled some external factors to enhance the predictive accuracy of models. However, the overall
nonlinear capability of these models is limited.
With the rapid development of the Internet of Things (IoT) and artificial intelligence technology, conducting
precise analysis and prediction of pedestrian flow data has become an essential part of emergency evacuation
in public places. As IoT devices become more widespread, multi-dimensional spatiotemporal complex data is
growing explosively, and deep learning models can better handle such complex data. Therefore, an
increasing number of researchers are applying deep learning models to the field of prediction. RNN[5]
consists of input layers, hidden layers, and output layers. RNN can process any input time series with its own
memory units, making it suitable for capturing long-term dependencies in dynamically changing
sequences[6], but it is prone to issues like vanishing or exploding gradients. To address this issue, Hochreiter
et al.[7] proposed the Long Short-Term Memory network, which can not only learn and model long-term
correlations in time series but also automatically determine the optimal prediction lag. Although LSTM can
alleviate the issues of vanishing and exploding gradients, it has a relatively large number of parameters and is
computationally complex. Both LSTM model and Gated Recurrent Units (GRU) use gating mechanisms to
control the memory cell's long-term memory of information, but GRU has a simpler structure. Fu et al.[8]
compared prediction results using LSTM model and GRU model, and the results showed that under the same
experimental configuration, GRU model outperformed LSTM model, with faster training speed and easier
convergence. Liang et al.[9] proposed a global relationship module to capture global spatial dependencies
and a meta-learner to study the impact of external factors on traffic data. In addition, many studies[10-17]
have combined convolutional neural networks with recurrent neural networks to jointly model the
spatiotemporal correlations of traffic data. Existing models recognize the importance of temporal and spatial
correlations but fail to effectively model this spatiotemporal dynamic correlation, which often leads to
unstable prediction results. This study combines the LSTM model and the GAT model, leveraging LSTM's
ability to handle time series data and GAT's ability to handle graph-structured data, to address issues that
require consideration of both temporal dependencies and spatial (or graph) structures. By integrating LSTM
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model and GAT model, the model can not only utilize historical information from time series data but also
leverage structural information from graphs, which helps improve the accuracy of multivariate time series
forecasting.

3. Congestion Prediction Model Design
Pedestrian flow data exhibits complex spatiotemporal characteristics. In the temporal dimension, the entire
road network shows patterns such as daily periodicity, weekly periodicity, and holiday periodicity, and there
is also correlation between adjacent time nodes. In the spatial dimension, road sections directly adjacent to a
node exhibit direct spatial correlation, while sections nearby but not directly adjacent exhibit indirect spatial
correlation, which gradually weakens with increasing distance from the node. Although existing forecasting
models have recognized the importance of temporal and spatial correlations, they often fail to effectively
capture this dynamic spatiotemporal correlation. Therefore, this paper proposes a multi-feature integrated
GAT-LSTM model. The LSTM model is chosen for its ability to capture long-term dependencies in time
series to extract temporal correlations; the GAT model is selected for its ability to capture complex spatial
relationships between nodes through an attention mechanism to extract spatial correlations. By combining
these, we aim to more accurately model the dynamic spatiotemporal characteristics of pedestrian flow and
improve the accuracy of predictions.

3.1. Study Area
This study predicts the pedestrian flow in an open scenic area of Huzhou City. The Huzhou Dragon Dream
scenic area, located in Huzhou City, Zhejiang Province, is a large-scale comprehensive tourist resort covering
an area of about 12,000 mu (approximately 8 million square meters). Among them, Taihu Ancient Town is a
tourist area themed on ancient town features. With a total construction area of about 660,000 square meters,
Taihu Ancient Town is an open scenic area with various public service functions such as historical relics and
leisure tourism, attracting a large number of tourists during peak travel seasons, making it highly susceptible
to congestion and posing significant safety issues. Therefore, there is a considerable need for pedestrian flow
prediction and management in this area.
As shown in Figure 1, the road network in this area is quite complex, including many intersections. The
scenic area has a large number of snack shops, and the roads along the lakeshore are suitable for sightseeing,
attracting a large number of tourists. The high-density crowds in these areas are likely to lead to stampede
incidents. Therefore, cameras and detectors are densely deployed within the scenic area to capture the
dynamic distribution of pedestrians.

Figure 1. Map of the scenic area interior.

3.2. Experimental Data
A detector was set up every 10 meters within the road network. To facilitate calculations, all pedestrian flow
data recorded by the detectors on each road were summarized to represent the flow data for that road. From
January 1 to October 31, 2023, we collected all data from all detectors at one-minute intervals, as detailed in
Table 1. In this experiment, the dataset was divided into training, validation, and test sets with a ratio of 7:2:1.
The model was trained in an end-to-end manner using the Adam optimizer, with an initial learning rate of
0.001. The training process was conducted over 50 epochs, with a dropout rate of 0.2 and a batch size of 64.
The model was implemented using Python 3.11 and PyTorch 2.2.2, and it was executed on a laptop equipped
with an Intel Core i7-13900HK CPU and an NVIDIA GeForce RTX 4060 GPU.

Table 1. Pedestrian data.
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Time Roads
Road1 Road2 ...... Road48

2023-01-01 00:00 0 0 ...... 0
...... ...... ...... ...... ......

2023-01-01 11:00 267 432 ...... 436
...... ...... ...... ...... ......

2023-01-01 18:00 298 311 ...... 582
...... ...... ...... ...... ......

2023-01-01 21:00 489 517 ...... 677
...... ...... ...... ...... ......

3.3. Model Design and Implementation

Pedestrian flow prediction is the process of forecasting future pedestrian flow based on already generated
pedestrian flow data. By using p spatiotemporal sequences of pedestrian flow from t time steps ago, the
pedestrian flow data for t time steps ahead is predicted. As shown in Equation :

��+1, . . . . . . ,��+� = �� • ��−�+1, . . . . . . ,�� (1)

Where θ represents the model's learnable parameters.
(1) Feature Fusion
Modeling Holiday Information. Holidays often lead to significant changes in pedestrian flow, which may
manifest as either an increase or decrease in pedestrian flow. For instance, during holidays, the number of
visitors in tourist attractions may rise noticeably, while on working days it may drop significantly. Therefore,
modeling these special dates and analyzing their impact on daily pedestrian flow patterns is crucial. This
paper refers to the Prophet model [18] for modeling holiday information. By using the 2023 calendar
information, detailed data on weekends, holidays, vacations, and more can be obtained. First, a mapping table
like Table 2 is established to distinguish each date as a working day or a holiday. Let B� represent whether

the date is a holiday, thus obtaining an indicator function for holidays.

�� = 1 � ∈ �� (2)

ℎ� = �� ∙ �� (3)

Where � ∈ � 0，�2 represents the parameter corresponding to holidays, indicating the impact of
holidays on pedestrian flow; B� denotes the set of all holidays.The holiday representation ℎ� is obtained by
performing a dot product operation between the weight �� composed of all holiday weights and the
indicator vector of time ��.

The holiday information Xholiday is aligned with the pedestrian flow data through a feedforward layer and
dimensionality transformation, thereby obtaining the holiday information feature embedding �ℎ표푙����:

Y
ℎ표푙����

= �•(�ℎ표푙�����ℎ
+ �

ℎ) (4)

Where W
ℎ
，b

ℎ
are learnable parameters, and σ is the activation function.

Table 2. Holiday information mapping table.

Data Holiday
2023-01-01 New Year’s Day Holiday
2023-01-02 New Year’s Day Holiday
2023-01-03 Working Day

...... ......
Modeling weather information. To model weather information, we employ the Gated Recurrent Unit (GRU)
to capture the dynamic implicit relationship between weather data Xweather and passenger flow Xflow, ultimately
obtaining the weather features.The passenger flow data and weather data are concatenated on the feature
dimension to form a unified input matrix X.
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X = concat (��푙표�,��푒��ℎ푒�) (5)

The input to the GRU is the matrix X, and its objective is to extract dynamic features from the time series.
The feature representation Yweather is obtained after X passes through the GRU.
(2) Dynamic Spatial Relationship Extraction
Align and concatenate Yweather , Yholiday and Xflow in the spatiotemporal dimensions to obtain the new output C.
Input C together with the spatial relationship data into the Graph Attention Network(GAT) model to achieve
the extraction of dynamic spatial relationships.

푒�� = �(� ∙ ℎ�,�∙ ℎ�) (6)

��� =
푒��(푒��)

�∈�(�)푒��(푒��)�
(7)

ℎ�
' = �(

�∈�(�)
���� �ℎ�) (8)

Where hi and hj are the features of nodes i and j, respectively. eij is the attention score between nodes i and j.
αij is the normalized attention weight. N(i) is the set of neighbors of node i. W is the learnable weight matrix.
σ is the activation function. The output after processing by the GAT is used as part of the input to the
LSTM .
(3) Time Series Prediction
LSTM is particularly adept at handling time series data and can capture long-term dependencies, which is
difficult to achieve in traditional RNNs. By controlling the flow of information through gating mechanisms
(forget gate, input gate, output gate), it effectively avoids the vanishing and exploding gradient problems.
LSTM allows for customization of the complexity of gating mechanisms and cell states, making it adaptable
to a variety of sequence prediction problems, and thus it is widely used in time series forecasting.
The LSTM model is used to capture the temporal dependencies of pedestrian flow. The updated node feature
from the GAT are fed into LSTM model. The LSTM model update equation are:

�� = � �� ∙ ℎ�−1，�� + �� (9)

�� = � �� ∙ ℎ�−1，�� + �� (10)

�� � = tan h �� ∙ ℎ�−1，�� + �� (11)

�� = �� ∗��−1 + �� ∗�
�
� (12)

표� = � �표 ∙ ℎ�−1，�� + �표 (13)

ℎ� = 표� ∗ tan h �� (14)

Where �� is the forget gate, controlling the retention of the previous memory. �� is the input gate,

controlling the update of the current input. �� � is the candidate memory cell. �� is the current memory cell.
표� is the output gate, controlling the current output. ℎt is the hidden state at time step t.
Finally, the hidden state ℎ� of the LSTM model is passed through a fully connected layer to obtain the

predicted pedestrian flow:

�� � =�� ∗ ℎ� + �� (15)

Where y �t ∈ R is the predicted pedestrian flow at time step t. Wy and by are learnable weights and biases.
The GAT-LSTM model is a hybrid model that combines Graph Attention Networks (GAT) and Long
Short-Term Memory networks (LSTM), designed to handle data with graph structural features and sequential
dependencies. By leveraging the strengths of both GAT model and LSTM model, the GAT-LSTM model can
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capture spatial relationships in graph data and temporal dependencies in sequential data simultaneously. The
GAT layer is responsible for assigning attention weights in graph-structured data, while the LSTM layer
models the temporal dependencies in sequential data.Figure 2 is the model architecture diagram of the
GAT-LSTM model.

Figure 2. GAT-LSTM Model architecture.

4. Experimental and Results
This paper uses four metrics —Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and Coefficient of Determination (R ² ) — to evaluate the LSTM, GCN, and
GAT-LSTM models. The smaller the metric values, the higher the predictive accuracy of the model.
(1)Mean Squared Error (MSE). MSE is a commonly used loss function for assessing the difference between a
model's predicted values and the actual values. It calculates the average of the squares of the differences
between the predicted values and the actual values.

푀�� =
1
� �−1

� �� −�
�
�
2� (16)

(2)Root Mean Squared Error (RMSE). RMSE is the square root of MSE, measuring the standard deviation of
the differences between predicted values and actual values, providing an error measure in the same units as
the original data.

푅푀�� =
1
� �−1

� �� − �
�
�
2� (17)

(3)Mean Absolute Error (MAE). MAE measures the average absolute difference between predicted values
and actual values, calculating the mean of the absolute values of prediction errors.

푀�� =
1
� �−1

� �� −�
�
�� (18)

(4)Coefficient of Determination (R ² ). R ² is a statistical measure that assesses the goodness of fit of a
regression model, representing the percentage of the dependent variable's variation that can be explained by
the independent variables. The value of R² ranges from 0 to 1, with values closer to 1 indicating a better fit
of the model, meaning that the model can explain more of the variation in the dependent variable.

푅2 = 1−
���
���

(19)

Where SSE is the sum of squared residuals, and SST is the total sum of squares.
By conducting experiments with the same data and configuration using LSTM, GCN, and GAT-LSTM
models respectively, the experimental results are obtained as shown in Table 3.

Table 3. Comparison of model prediction results.

Model MSE RMSE MAE R2

LSTM 6167.8978 78.53596 62.7659 0.8356
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GCN 11643.9042 107.9069 80.7350 0.8077

GAT-LSTM 3314.9153 57.5753 24.4944 0.9476

5. Conclusion
The time-series data of tourist attraction pedestrian flow is often influenced by external factors such as
holidays, which exhibit deep implicit relationships with pedestrian flow. By modeling the correlations of
these external factors, feature enhancement can be achieved, thereby improving prediction performance. By
analyzing historical data and related features, precise pedestrian flow prediction is achieved using deep
learning, thereby enabling congestion prediction. This paper proposes a feature fusion-based pedestrian flow
prediction model, incorporating holiday information as a key feature to enhance prediction accuracy and
robustness through feature fusion modeling. The model combines Graph Attention Network (GAT) and Long
Short-Term Memory (LSTM), leveraging GAT model to capture spatial dependencies in the traffic network
and LSTM model to capture temporal correlations. The GAT-LSTM model can adapt to new graph structures,
such as predicting unseen graphs in inductive learning tasks, thereby enhancing its capability to handle
graph-structured data. Furthermore, the model does not rely on complete graph information for learning,
demonstrating high flexibility and effectiveness in processing dynamically changing or partially observable
graph data. Experimental results show that the GAT-LSTM model exhibits significant advantages in
pedestrian flow prediction, providing high-precision predictions and adapting to various traffic networks and
conditions.

Funding: This research was supported by the Public Welfare Project of Zhejiang Provincial Science and
Technology Department No.LGF22F020034.
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